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Introduction

Generated data

0 | _ ABM
simulator

Input

parameters
* (Stochastic) simulation model of many autonomous, interacting

ABM agents making (often discrete) decisions

simulator - Simulation denoted mathematically as sampling from likelihood
function:

x ~p(x|0)
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Using agent-based models

e Usually want to calibrate ABMs when applying them in practice, e.g.
using Bayesian inference:

(0 | y) o e 0¥z ()

Plausible
parameters

y — 0

Observed data

e Calibration (and other problems) made complicated by complexity of
ABMs — likelihood function unavailable, expensive to simulate, discrete
randomness prevents immediate construction of useful gradients etc.
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This talk

e Performing optimisation-centric calibration procedures with and
without model gradients

e How to get around difficulty of differentiating through discrete
randomness
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Bayesian inference as optimisation

(0 ]y) x e 1OY)r(0)
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Bayesian inference as optimisation

e_e(eay)
Z(y)

m(0]y) = m(0)

()] [nstitute for ((*;g\) DEPARTMENT OF
W New Econom ic Thinking o4 COMPUTER
)| AT THE OXFORD MARTIN SCHOOL OXFOR SCIENCE




Bayesian inference as optimisation

01y)= o)
T = ™
T 20y
Taking O to be the set of all distributions on O :
) | q(0)
g = argminlEg., |log
€ T Tm(O]y).
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Bayesian inference as optimisation

01y) =)
T = 7
YT T y)
Taking O to be the set of all distributions on O :
, i Q) 7/ ]
q¢* = argminEgy., |log qg 9) )
qgeQ I e ’Y)W(O)_
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Bayesian inference as optimisation

e_g(eay)
Z(y)

Taking O to be the set of all distributions on O :

m(0]y) = m(0)

'_ﬂe(é?ajf)
—areminlkqp.. | —1lo - lo
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Bayesian inference as optimisation
e_g(eay)

Z(y)

Taking O to be the set of all distributions on O :
%

- q(6)

m(0]y) = m(0)
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Bayesian inference as optimisation

9 e_g(eay) 9
Taking Q to be the set of all distributions on © :
' e q(0)
—argminEg., [4(0, yv) + 1o
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Bayesian inference as optimisation

01y)- (o)
™ y) = T
Z(y)
Taking Qg to be a restricted set {q4 | ¢ € @} of distributions on ©:

¢ = argminfo..q, (0, y) + log

qp<(0) = (0 |y)
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Bayesian inference as optimisation

01y)- (o)
™ y) = T
Z(y)
Taking Qg to be a restricted set {q4 | ¢ € @} of distributions on ©:

5 - q
¢ = argminfo..q, (0, y) + log 0)

qp<(0) = (0 |y)

Generalised variational Bayesian inference
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Quick schematic of variational Bayes

. qs(0) ' 29(6)
03 Eor, llog @] y)] RFES [log (6 | y)
o
(0 |y)
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Optimising

Optimisation problem:

. 45 (0)
O |
sea 0% |95 Tg [y)
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Optimising

Optimisation problem:

min
PpED

Jqu(b

5,
log qe(0)

(@ ]y).

Minimise with gradient-based descent methods:

ﬂgN%

q4(0)

log

(0 |y).

s

OMPUTER
sty SCIENCE



Optimising

Optimisation problem:

. qe(0)
0~ |
glélg O~as _ng(é’\y)_

Minimise with gradient-based descent methods:

qs(0)
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Optimising

Optimisation problem:

| q4(0)
AH ~v 1
oeo 0~ |8 g Ty)

Minimise with gradient-based descent methods:

qs(0)

? V¢E9NQ¢ 6(9, y) + log 7T(9)
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Optimising

Optimisation problem:

. q4(0)
GO |

Minimise with gradient-based descent methods:

Find G such that E|G] = VgEg.q, [E(O, y) + log q¢((g))]
7r
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Monte Carlo gradient estimation

G such that E|G| =V ,E.., [£(2)]
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Monte Carlo gradient estimation

G such that E|G| =V ,E.., [£(2)]

Score-based estimator

G = L(2)V,logp,(2)

mpe [L(2) Vi 10g D (2)] = Vi Esmp, [£(2)]
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Monte Carlo gradient estimation

G such that E[G] =V E L(2)]

Score-based estimator

G = L(2)V,logp,(2)

mpe [L(2) Vi 10g D (2)] = Vi Esmp, [£(2)]

» Generically applicable (e.g. in presence of discrete randomness)
« Can be high-variance — less reliable gradients
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Monte Carlo gradient estimation

G such that E|G| =V ,E.., [£(2)]
Pathwise estimator

G = Vwﬁ(g(u,w))|

g(u,w)==2

Eunp |Vl (9(0,0)) |y 0. ] = VoErp, [£(2)]
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Monte Carlo gradient estimation

G such that E|G| =V ,E.., [£(2)]

Pathwise estimator

G = Vwﬁ(g(u,w))‘

g(u,w)=2

Eunp |Vel(9(0,0) |y 0. ] = VoErp, [£(2)]

* Requires differentiable[, & “reparameterisable” £
 |s often (though not always) lower-variance — often gives more informative
gradients!
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A possible benefit of differentiability

Minimise with gradient-based descent methods:

Find G such that E|G] = VyEg.q, [£(0,y) + log q¢((g))
7r
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A possible benefit of differentiability

Minimise with gradient-based descent methods:

qy(6)
7(6)

Find G such that E|G] = VyEg.q, [£(0,y) + log

If our choice of £(0, y) is(a) differentiable and (b) estimated using
samples from the agent-based model, then we can potentially obtain
lower-variance estimates of the gradient during optimisation by
implementing the agent-based model in a differentiable programming
language and using the pathwise gradient estimator
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Accessing pathwise gradients

Reparameterisable sampling
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Accessing pathwise gradients

Reparameterisable sampling

2~ N(p, o)
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Accessing pathwise gradients

Reparameterisable sampling

u ~ N(0,1)
2= g(u,w),
where w = (u,0) and

2~ N(p,0) i g(u,w) = p+ou
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Accessing pathwise gradients
Reparameterisable sampling
u~ N(0,1)

z = g(u,w),

where w = (u,0) and

ZNN(M,O') or g(u,w)zu—|—gu

Reparameterisation
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Accessing pathwise gradients

Reparameterisable sampling

u ~ N(0,1)

z = g(u,w),

where w = (u,0) and

2~ N(p,0) i g(u,w) = p+ou

Reparameterisation

0z 0z
— =1 —=u
oL Oo
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Accessing pathwise gradients

Reparameterisable sampling for discrete random variables

« Harder, but possible:
* Approximate model gradient using smoothed versions of

discrete random variables (e.g. Gumbel-Softmax [1])

» Imperfect solution/workaround, since the model gradient is still not “correct”. But
can work sufficiently well in some settings!

» StochasticAD [2]

[1] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization with
Gumbel-Softmax. arXiv:1611.01144 [cs, stat]

[2] Gaurav Arya, Moritz Schauer, Frank Schafer, and Chris Rackauckas. 2022. Automatic
Differentiation of Programs with Discrete Randomness. arXiv:2210.08572 [cs, math]
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Accessing pathwise gradients

Overall strategy

1. Implement ABM in differentiable framework (e.g. PyTorch,
Jax)

2. Use aforementioned tricks to obtain an (approximate)
model gradient (without changing the forward pass of
model!)
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Experiments
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Experiments

Agent-based model

Implement and calibrate differentiable version of simple ABM of
volatility clustering in financial markets (Cont, 2007)

 Discrete choices by agents
» Threshold effects
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Experiments

Agent-based model

Implement and calibrate differentiable version of simple ABM of
volatility clustering in financial markets (Cont, 2007)

 Discrete choices by agents
» Threshold effects

Simulation loop:

1. Each agent receives a common information signal

2. Each agent processes signal and decides whether to place
purchase order

3. Excess demand determines change in price

4. Agents consequently update their signal processing procedure
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Experiments

Inference problem

Perform generalised Bayesian inference targeting

(0 ]y) x e 1OY)r(0)

with £(0,y) a divergence between distribution of simulated and
“real” log-returns, by solving minimisation problem shown before
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Experiments

Inference problem

Perform generalised Bayesian inference targeting

(0 ]y) x e 1OY)r(0)

with £(0,y) a divergence between distribution of simulated and
“real” log-returns, by solving minimisation problem shown before

Approximate (intractable) 7 (@ | y) using variational inference

0
minEg.q, |£(0, y) + log 4(9)

pED 7(6)

taking g¢ to be a “normalising flow” (i.e. neural density estimator)
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Experiments

Calibrate using our BlackBIRDS* software package

107" F
10—2 L
2
3
1072 3
107 — Score E
Path
0 500 1000 1500 2000 2500 3000

Number of simulations

Figure 1: Training loss for the generalised variational infer-
ence scheme with score-based (blue) and pathwise (orange)
gradient estimators. Dark lines show the moving average loss
by averaging over 10 epochs.

References
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Figure 3: Sample trajectories for the asset price from the
posterior predictive distributions obtained from the score-
based (blue) and pathwise (orange) gradient estimators. True
asset price is shown with the black line.
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Code?

O joelnmdyer |/ gradient_assisted_calibration_abm

Contributors 2
B 1 q c k B I R D S a arnauqb et
@ joelnmdyer Joel Dyer

Recently published in:
The Journal of Open Source Software
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Summary/discussion

» Bayesian inference (and other calibration approaches) for ABMs
can be written as an optimisation problem — minimising
expectations of random losses

» Differentiability of ABMs can sometimes help to perform this
optimisation

* Limitations:

» Usefulness of gradients depends on bias-variance tradeoff of
estimators they are used for

« Simulator gradients less useful when (derivative of) loss
function is intractable (consider e.g. maximum likelihood
estimation)
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Summary/discussion

» Bayesian inference (and other calibration approaches) for ABMs
can be written as an optimisation problem — minimising
expectations of random losses

» Differentiability of ABMs can sometimes help to perform this
optimisation

* Limitations:

» Usefulness of gradients depends on bias-variance tradeoff of
estimators they are used for

« Simulator gradients less useful when (derivative of) loss
function is intractable (consider e.g. maximum likelihood
estimation)

Thank you!

Email: joel.dver@cs.ox.ac.uk

Website: joelnmdyer.github.io
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