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Agent-based models

Input 
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Generated data

• (Stochastic) simulation model of many autonomous, interacting 
agents making (often discrete) decisions 

• Simulation denoted mathematically as sampling from likelihood 
function:



• Usually want to calibrate ABMs when applying them in practice, e.g. 
using Bayesian inference: 

• Calibration (and other problems) made complicated by complexity of 
ABMs – likelihood function unavailable, expensive to simulate, discrete 
randomness prevents immediate construction of useful gradients etc.
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• Score-based gradient estimator 
• Generically applicable (e.g. in presence of discrete randomness) 
• Can be high-variance – less reliable gradients 

• Pathwise gradient estimator 
• Requires differentiable loss function       & “reparameterisable”   
• Is often (though not always) lower variance – often gives more 

informative gradient estimates
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A possible benefit of differentiability
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Minimise with gradient-based descent methods:

• Differentiability of         and the agent-based model can (sometimes) 
provide access to potentially lower-variance pathwise gradients 

• Differentiability can be achieved using, e.g., 
• Approximate model gradients, using smoothed versions of discrete 

random variables (e.g. Gumbel-Softmax [1]) 
• StochasticAD [2]

A possible benefit of differentiability
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Accessing & using pathwise gradients

Overall strategy

1. Implement ABM in differentiable framework (e.g. PyTorch, Jax) 

2. Use aforementioned tricks to obtain an (approximate) model 
gradient (without changing the forward pass of model!) 

3. Perform gradient-based descent on expectation of loss function 
using these pathwise gradients
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Agent-based model

Implement and calibrate differentiable version of simple ABM of 
volatility clustering in financial markets (Cont, 2007) 

• Discrete choices by agents 
• Threshold effects 
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Experiments
Agent-based model

Implement and calibrate differentiable version of simple ABM of 
volatility clustering in financial markets (Cont, 2007) 

• Discrete choices by agents 
• Threshold effects 

Simulation loop: 

1. Each agent receives a common information signal 
2. Each agent processes signal and decides whether to place 

purchase order 
3. Excess demand determines change in price 
4. Agents consequently update their signal processing procedure
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Perform generalised Bayesian inference targeting 

with               a divergence between distribution of simulated and 
“real” log-returns, by solving minimisation problem shown before 
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Perform generalised Bayesian inference targeting 

with               a divergence between distribution of simulated and 
“real” log-returns, by solving minimisation problem shown before 

Approximate (intractable)                  using variational inference 

taking       to be a “normalising flow” (i.e. neural density estimator)
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Experiments
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Calibrate using our BlackBIRDS* software package
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Discussion
• Usefulness of gradients depends on bias-variance tradeoff of 

estimators they are used for 
• Simulator gradients less useful when (derivative of) loss function 

is intractable (consider e.g. maximum likelihood estimation) 
• Noisier gradients may sometimes be desirable
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Thank you!
Email: joel.dyer@cs.ox.ac.uk 

Website: joelnmdyer.github.io 
Twitter/X: @joelnmdyer
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